
research papers

1340 doi:10.1107/S0907444906030162 Acta Cryst. (2006). D62, 1340–1347

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

Integrated software for macromolecular
crystallography synchrotron beamlines II: revision,
robots and a database

John M. Skinner, Matt Cowan,

Rick Buono, William Nolan,

Heinz Bosshard, Howard H.

Robinson, Annie Héroux,

Alexei S. Soares, Dieter K.

Schneider and Robert M. Sweet*

Biology Department, Brookhaven National

Laboratory, Upton, NY 11973, USA

Correspondence e-mail: sweet@bnl.gov

2006 International Union of Crystallography

Printed in Denmark – all rights reserved

This manuscript chronicles the evolution of software used

originally to control a diffractometer at a macromolecular

crystallography beamline. The system has been augmented

and rewritten. A modular and carefully organized suite of

programs now handles the whole experimental environment

from a single vantage point. It provides automatic logging of

the experiment and communication with the user, all the way

from an initial proposal to perform the work to the end of data

collection. This has included construction of a relational

database to organize all details of the experiment and

incorporation of a robotic specimen changer to provide

automation for high-throughput applications.

Received 3 April 2006

Accepted 1 August 2006

1. Background and introduction

For over a decade, workers in the field have recognized that

efficient use of a macromolecular crystallography (PX)

beamline’s experimental station demands software that is easy

to use and reliable. Also, in this era where what we used to call

‘computing’ is now named ‘information technology’, we can

expect our software to keep track of and organize ‘informa-

tion’ about our experiments as well as collecting and storing

the data. The programmers of this software have dual

responsibilities not only to design an intuitive interface to the

experiment, but also to provide underlying control code that

they can adapt easily to the ever-changing hardware that it

controls. In particular, hardware had traditionally been limited

to beamline motors, scalers, diffractometers, and X-ray

detectors. However, new challenges are arising for software

designers as sample-changing robots, the need for remote

operation, and associated project-management database

systems are required to meet the demands of high-throughput

crystallography. It is not sufficient that the scientific users find

the software to be easy to use, to work flawlessly, and to

organize and annotate data in a useful way; it must also be

easy to understand, expand, and modify for the programmers.

This document, an update of our previous report (Skinner &

Sweet, 1998), presents our progress towards this objective.

We in the NIH- and DOE-funded Macromolecular Crys-

tallography Research Resource (PXRR) at Brookhaven

National Laboratory’s National Synchrotron Light Source

have developed several nicely integrated yet structurally

independent components of our software system. The front

end of the experimental control is CBASS (Crystallography at

Brookhaven Acquisition Software System), a user-friendly

Python-based system that integrates data-collection and

beamline control. The software also communicates with a

sample-mounting robot1 and a project-management relational

database system, PXDB, which is accessible to the user

through both web-based tools and CBASS. An additional

component, completely hidden from users and routine

operators, is the highly organized and flexible control system

for beamline components. A crucial feature of the software is

that the software looks and feels the same at every one of our

six beamlines, with differences hidden in beamline-specific

scripts and variables hidden in startup files. This greatly

facilitates the movement of users among the experimental

stations.

In our continuing effort to enhance the productivity of

visitors to our NSLS beamlines, we have presented numerous

innovations to the world. These include the first electronic

area-sensitive detector at a beamline in the US and on-site

computer resources for real-time data reduction (1991). We

developed the first graphical user interface (GUI) for

diffractometer and data-reduction control (Skinner et al.,

1993), an integrated GUI for beamline control and data

collection (Skinner et al., 1996), automated spectrum analysis

and energy optimization during MAD data collection (1995),

‘one-button’ data reduction with graphical analysis tools

(Skinner & Sweet, 1998), integrated data-collection strategy

prediction (Ravelli et al., 1997), web-based remote observa-

tion of the experiment (1998), web-based experimental

control (1999), and automatic experiment logging into a web-

viewable log file (Sweet et al., 2001). We also have developed a

broad and deep mail-in program for collaboration and service

wherein specimens are shipped to our scientific staff for

measurement2 (Robinson et al., 2006). This work depended on

early work in diffractometer control (Messerschmidt & Pflu-

grath, 1987), and other work has appeared more recently. In

particular, the Blu-ice program has been described by the

Stanford group (McPhillips et al., 2002) and a system with

much of the functioning of that described here has been

reported by the structural genomics group at SPring-8 (Ueno

et al., 2005).

With careful attention to modular design, the software

systems described in our earlier references were easily

adapted to run detectors manufactured by Enraf–Nonius,

MAR, Brandeis, and ADSC. The program also controlled

diffractometers produced by Enraf–Nonius, MAR and Crystal

Logic. With the development of a suite of convenience tools to

facilitate data-collection strategy, data processing, and remote

control and observation, the package served the NSLS PX

community well throughout the 1990s. Given the early roots of

the programming efforts, it is not surprising that the programs

comprised well over 100 000 lines of C and Fortran code. To

meet the needs of a continually changing landscape of hard-

ware and software, we needed to perform a major restruc-

turing of our entire software effort. We relate the results of

this work below.

2. Evolution of the software

By 2001, our motor-control hardware needed replacing. We

chose to accomplish motor and scaler control through EPICS

(Experimental Physics and Industrial Control System; http://

www.aps.anl.gov/epics/), some aspects of which we will

describe later, implemented on a VME-based system. Proto-

typing of the higher level software control began in Python

and we soon recognized that Python would be an excellent

language for the production system. Use of Python enabled us

rapidly to develop and deploy a stable system to provide

command-line control and scripting facilities that would sit

between EPICS and our existing Motif-based beamline-

control GUI. The code was small, readable, and adaptable.

Given the success of the Python/EPICS project, Python was

used in 2002 to develop a program to replace the massive

Fortran code in MADNES (Messerschmidt & Pflugrath, 1987),

the underlying data-collection control software. The approach

was straightforward, using SWIG (Simplified Wrapper and

Interface Generator; Beazley, 1996) to generate Python inter-

faces to low-level diffractometer- and detector-control

libraries supplied by the vendors, and then providing

command-line control logic and scripting capabilities with

Python. The result was that over 70 000 lines of Fortran code

were replaced by less than 6000 of straightforward Python

code with loss of only some little-used functionality. At this

point, all of our underlying data-collection and beamline-

control code was implemented in Python, while the Motif/

C-based GUIs remained.

With the new sample-changing robot and project-manage-

ment database system on the horizon in 2003, it was clear that

significant and frequent changes would need to be made to the

user-interface software to accommodate robot control, new

data-collection protocols, and interaction with the database

system. Although the existing GUIs were robust and stable,

we recognized that extensive modifications and extensions to

the Motif/C code would be extremely labor-intensive. Starting

from scratch in a different programming language seemed like

a daunting task, but if performed properly the result would be

a flexible system that could be adapted easily to service the

changing aspects of the user’s interface to the experiment. The

result is a package accessible from a single GUI that has nearly

all of the functions of the original system described in the

original publication (Skinner & Sweet, 1998). It now also

includes intimate control of the sample changer, the database,

and the components of the beamline that were accessible

before through a separate GUI.

Despite our having previous GUI-programming experience

in Java and Tcl/Tk, we chose Python/Tkinter to rewrite and

extend our graphical interface. Tkinter is the Python interface

to Tk, the GUI toolkit for Tcl/Tk, so it was easy to learn to

construct GUIs with Python. Development was facilitated

further by the rich set of interface components, or widgets,

provided by the Python megawidgets (Pmw) package. The

Tkinter/Pmw combination provided a powerful, easy to use

and well documented software platform for GUI develop-

ment. WxPython, another toolkit for Python-based GUI

research papers

Acta Cryst. (2006). D62, 1340–1347 Skinner et al. � Integrated software for synchrotron beamlines 1341

1 We have adapted the LBL-ALS automount robot in collaboration with
Thomas Earnest and his colleagues (Snell et al., 2004).
2 Also known as a ‘FedEx’ operation.

development that has become popular, was

not a consideration for us in 2003, owing in

part to sparse documentation and to a wider

acceptance of Tkinter as the standard GUI

toolkit for Python at that time.

Also, consistent with our modular

approach, we constructed the new system

with ‘client/server’ architecture. As we will

describe below, multiple clients (copies of

the CBASS GUI or other clients such as a

java-based web client) communicate with

the single CBASS server at each beamline.

This server is invisible to users and depends

on additional control modules to commu-

nicate with each piece of hardware. By mid-

2004, the six PXRR beamlines were under

control of the rewritten and extended

Python-based CBASS.

3. CBASS, the experiment-control
software

The CBASS window is a ‘notebook’ with up

to six ‘pages’ that can be selected with tabs

named Collect, Setup, Robot, Pucks, Canes

and Beamline. Which pages are to be

displayed in a particular environment are

controlled by environment variables set in

the CBASS configuration file. Fig. 1 shows

the main window with the six page tabs

available at the time of writing. The entering

of text in windows or selection of buttons on

the GUI triggers transmission of a command

to the CBASS server. These same

commands can be entered as text directly

into the Command window, used typically

by operations staff to obtain status details.

Notice the connection to our experiment-

tracking database, PXDB: group and project

identifiers (PxID) can be selected from pop-

up selection boxes with appropriate buttons

next to the command line. Counter readouts

and monochromator wavelength are also

displayed in this horizontal strip, which is

always visible. The white scrolled window

displays output from the server.

3.1. The Collect page

This page, shown in Fig. 1, is the origin of

all operations of the diffractometer and

detector. It shows the current status of both

in the middle panels on the left and right.

There are also several options for immediate

control in these panels and the row of

control buttons below, such as setting a

diffractometer axis, opening or closing the

research papers

1342 Skinner et al. � Integrated software for synchrotron beamlines Acta Cryst. (2006). D62, 1340–1347

Figure 1
Overview of CBASS display showing the Collect screen.

Figure 2
The CBASS beamline-control page.

Figure 3
The Pucks page from CBASS. This page displays information about individual specimens in
cassettes (pucks) for the cryogenic automount robot. The information is typically loaded from
the PXDB database.

X-ray shutter etc. At the top is a scrollable table, each line of

which represents a sweep of data collection. The Collect Data

button starts up automatic data collection from the instruc-

tions present in the sweep table, starting at the top and

working its way down. Colors change during operation so the

operator can monitor progress at a glance. The Test Shot

button takes only the first image from the sweep indicated in

the top row of this table. It also operates quickly by taking a

quick and only approximate ‘dark’ image from the detector for

image correction. The Wavelength box is live: the current

wavelength is shown when the page is opened and then the

monochromator will move to the wavelength indicated, just

before the sweep is started, if it has changed. If the character I

or P follows the number, the excitation spectrum will be

scanned and the true rising inflection point or peak will be

chosen, respectively, for the sweep of

data. This allows automatic MAD or

SAD data collection with quite precise

selection of the desired wavelength.

This table can also be loaded from the

Pucks, Canes or Setup page, as we will

describe later.

3.2. Beamline page

Basic beamline control, such as

monochromator scans and frequently

used beamline alignments, are

controlled from the Beamline page

(Fig. 2). The intent of this page is to

provide an interface to the beamline

components and functions used during

typical experiments. More complex

beamline operations, such as mirror

adjustments, which are normally

performed by beamline staff, are

handled with our separate GrEpx soft-

ware or EPICS interfaces, providing full

access to beamline motors.

Selection of the Count button will

display the X-ray intensities as counter

readings at the collimator, fluorescence

detector, and an additional upstream

counter. Monochromator settings and

scan parameters are controlled in the

right-hand panel. The Select Wave

button displays a periodic table with

selectable elemental absorption edges.

Other buttons at the bottom of the page

allow for beamline-specific realign-

ments, shutter control, and mono-

chromator scan analysis. Although the

Realign button nearly always works to

optimize the X-ray beam through the

diffractometer apertures, the diffract-

ometer table can be adjusted with a

Tweak Box (Skinner & Sweet, 1998),

which employs left and right mouse clicks to adjust motorized

components.

3.3. Pucks, Canes, Setup and Robot pages

The Pucks page (Fig. 3) is designed to be used with the

PXRR sample-mounting robot. The Pin buttons A1–D16 map

to the robotic automounter dewar, which contains four crystal

cassettes (pucks) A–D, each of which contains 16 crystal-

mounting pins. The investigator will load information

describing the contents of each puck and the desired actions

on each crystal into PXDB with a web-based interface that

looks essentially like this page. Pushing the Load Puck Info

button in CBASS will pop up a selection box that allows the

operator to select pucks from PXDB entries. Selecting a puck

research papers

Acta Cryst. (2006). D62, 1340–1347 Skinner et al. � Integrated software for synchrotron beamlines 1343

Figure 4
The HTML Log in action.

will fill in the chosen puck position (A–D) with information

and parameters found in PXDB.

The data-collection parameters of all specimens listed in the

Pucks page can be edited globally or individually, as desired.

Pushing a Pin button (e.g. ‘Load A’) will load information into

the first unused row in the sweep table of the Collect page

(Fig. 1). Selection of the Collect Data button from there, after

items have been loaded in this fashion, will cause the robot to

mount samples from the appropriate puck/pin positions and

proceed to obtain the data. Directories of the form

‘./[PXID]/[XtalID]/sweep_number/’ will be created

automatically, into which the resulting data images will be

stored. ‘Sweep number’ is determined from the record of

previous data sweeps performed on the XtalID with the

current PXID as stored in the PXDB. If the Protocol option

menu was set to ‘Screen’ in PXDB, then data collection will

employ default parameters established at the beamline, which

can be changed by selection of Edit Default Screening

Params

The scientists in our mail-in data-collection program

(Robinson et al., 2006) receive crystal-filled dewars for on-site

data collection on behalf of remote investigators. The crystals,

in vials, are typically held in tubes or ‘canes’. These investi-

gators transfer information about the specimens on a Canes

page from the PXDB that can be loaded into CBASS in the

same way that the Pucks screen is populated. Vial positions in

the canes are numbered 1–6 starting at the bottom of the cane.

Pushing the Load button for any sample will load the Collect

screen using the same file and directory-creation protocol as

the Pucks page. Some experimenters liked the automatic

directory-creating protocol found in the Pucks and Canes

pages and requested that a page be constructed where one

could take advantage of those protocols for individual speci-

mens. The Setup page provides this possibility.

The Robot page was prepared to provide simple mounting

and dismounting of individual samples, where the only infor-

mation provided is one crystal position in a puck, e.g. C-7.

However, the Pucks page provides everything necessary to

drive the robot during automated data collection for any

number of crystals.

3.4. The Tools menu

A variety of features can be run from the Tools menu on the

main menu bar.

3.4.1. AutoAdxv. AutoAdxv executes the ADXV image-

viewing program from Area Detector Systems Corp. with the

‘autoload’ option. In this mode, ADXV displays each image as

it is collected.

3.4.2. AutoMax. The CBASS AutoMax facility can be used

on certain beamlines to perform automatic beamline align-

ments during data collection. This tool prompts for the

frequency in minutes for which the user would like optimi-

zations to be run. When it is time for AutoMax to perform an

optimization, it pauses data collection, runs the beamline-

specific realignment and then resumes collection.

3.4.3. CrystalView. The CrystalView tool displays a live

magnified video image of the crystal. On beamlines with a

motorized goniometer head this image can be used to center

the crystal in response to the user clicking the crystal center on

the image.

3.4.4. Edit Preferences. Several options can be toggled from

the Edit Preferences menu. Most of these are placed in the

$CBASS_SITE_FILE by the beamline administrator to estab-

lish default behavior for the beamline. HTML Logging turns

on and off the HTML logging of the experiment (see below).

Max Before Sweep determines whether the beamline-specific

beam-intensity optimization is performed before each data

sweep. I0 Logging turns on/off collection of a continuous

record of the intensity of the X-ray beam striking the crystal:

the I0 logging. The record contains a count that is performed

during the recording of each image. A plot of the results is

placed in the data html directory, a link to that plot is in the log

for each run, and a ‘master’ I0 file is generated in the directory

from which CBASS was started.

3.4.5. The HTML log. CBASS generates a record, formatted

in HTML (hypertext markup language), that is easily viewed

in any browser and is structured as follows. A ‘root’ HTML

document contains monochromator scan plots and analysis, as

well as other parameters and links to the HTML data logs of

each sweep. The HTML data logs (Fig. 4) pointed to by the

root HTML document contain JPEG ‘thumbnail’ images of

each data image, periodic pictures of the crystal, and an I0 plot

at the end of the run if I0 logging is activated.

4. A project-management and experiment-tracking
system, PXDB

As our mail-in data-collection project (Robinson et al., 2006)

developed, it became clear that we required a reliable

mechanism both to communicate with our clients and to keep

records automatically of the work that was performed. To

meet these needs and simplify work for all of our users and

staff, we built a project-management system that is accessible

through the web and integrated it with our data-collection

system, CBASS. Ultimately, this project aims to automate, as

much as possible, generation of the diffraction-experiment

components of a Protein Data Bank submission (Berman et

al., 2000). We call this system PXDB and the access point is

http://www.px.nsls.bnl.gov/pxdb/.

The system is designed to integrate seamlessly with the

NSLS’s Proposal, Allocation, Safety and Scheduling (PASS)

system (https://pass.nsls.bnl.gov/), both to provide a mechanism

for potential users to request beam time for experiments

(PASS) and then to keep track of those experiments (PXDB),

especially if they were being performed remotely or as mail-in

clients. A major objective is that the investigator should never

have to type in the same thing twice. To this end, each indi-

vidual associated with an experiment will have personal

contact information stored in the Brookhaven Laboratory

Guest Information System, accessible both to PASS and

PXDB, and individual projects are defined once and then are

research papers

1344 Skinner et al. � Integrated software for synchrotron beamlines Acta Cryst. (2006). D62, 1340–1347

stored so that the investigator can find important information

easily.

We index every user and project to the group leader or

principal investigator on the project and there is password

protection for each group’s information within the database. A

simplified view of the organization may be seen schematically

in Fig. 5. The database is organized by research groups or

programs, with a principal investigator at the head. There may

be several projects associated with each group or program.

Individual experimenters will be associated with one or more

projects and may be part of several groups. There may be

many crystals used for each project. Each data sweep is

recorded for each crystal and these need not be performed

during the same experimental session. Although this section of

the database is not represented here, the PXDB entries for the

dewar-shipping canes or automounter cassettes (pucks) may

cut across project boundaries.

After logging in to the PXDB, a user has access to all of the

group’s password-protected information. From there a user

has access to all the group’s information. Individuals can be

added to or deleted from the group and new projects may be

defined in a way parallel to the project definition in PASS.

These project definitions, or PX Forms, carry a unique PX-ID

number that indexes through the database. They include a

complete title and abbreviation, an abstract of the project that

is used for reporting to granting agencies, and typical crys-

tallographic details. Then, for rapid-access visits or mail-in

submissions, the user and beamline staff have status logs and

an archived ‘chat’ system for secure two-way communication.

Of course, the Puck and Cane forms implied in the description

of CBASS are available in PXDB. The system is used heavily

by the beamline staff, especially the mail-in program scientists,

to monitor the state of various experiments and there is a

range of administrative functions available, hidden to the

users, for this work.

Work being performed at all of the PXRR beamlines can be

monitored in real time through a Sweep Query tool. Here one

finds, for every sweep of data measured, the beamline and

other useful information, including a link to the relevant

HTML log (Fig. 4), as well as discussion and other links for the

project. The discussion links lead to threads in a bulletin-

board system for project correspondence and notes, primarily

intended to facilitate and record communications between

mail-in scientists and their clients. As implied by the name, the

Sweep Query is a search interface, providing a variety of

criteria for tuning the list of sweeps one wishes to see.

In general, the PXDB is central to the organization of our

mail-in program in the way that it organizes work under the

authority of a single principal investigator and records the

action on every crystal. Its usefulness appears to be growing

among outside users.

5. The use of EPICS in our control system

To provide a link between CBASS and many of the devices in

the beamline, mostly motors and scaler/timers, we have

adopted EPICS (Experimental Physics and Industrial Control

System). This allows us to take advantage of active develop-

ments by a world-wide collaboration (http://www.aps.anl.gov/

epics/) of a thoroughly modern device-control architecture

distributed as an open source by the University of Chicago. A

tremendous advantage to this approach is that the open-

source EPICS collaboration has provided almost all the driver

and device support we have ever required.

EPICS operates as a network-based client/server system.

Each ‘server’ itself drives one or more device and we operate

two sorts of server at each beamline. One is a VME-based

processor and crate operating under RTEMS, driving stepping

motors and scalar/timers; the other is a computer running

linux that controls analogue and digital IO, serial commu-

nication channels and many additional functions. In our case,

the only ‘client’ available to casual users is CBASS. We have

created special-purpose clients that allow more specialized

and simultaneous operation of the devices by the beamline

staff to monitor selected devices, to display statuses, to record

parameter histories and to debug problems. Operations are

both convenient and secure because the servers allow

connection for control through a well defined and tightly

constrained protocol.

An illustration of the versatility and effectiveness of EPICS

in the hands of an experienced programmer is the recent rapid

development of a gap-control method for a new undulator

installed recently at beamline X25 (Tanabe et al., 2006). Our

layered EPICS construct allowed us to create an energy-

changing protocol that would translate wavelength change

requests by the CBASS user into coordinated mono-

research papers

Acta Cryst. (2006). D62, 1340–1347 Skinner et al. � Integrated software for synchrotron beamlines 1345

Figure 5
The organization of PXDB. The database is organized by research groups,
defined by broad programs, with a principal investigator at the head.
There may be several projects associated with each group or program.
Individual experimenters will be associated with one or more projects and
may be part of several programs. There may be many crystals used for
each project. Each data sweep is recorded for each crystal and these need
not be performed during the same experimental session.

chromator-angle and undulator-gap adjustments. This leaves

the NSLS ring operators with priority access to the undulator

gap for ring filling and other adjustments.

Although the effort to learn to use EPICS was substantial,

the rewards we have reaped have proven to be worth it. The

ability to incorporate new hardware and devices rapidly,

without the need to modify CBASS, has sped our controls

developments. Additionally, providing a clearly separate

domain of control from CBASS has allowed beamline controls

to be improved and deployed without interfering with user

operation or demanding effort to create changes in CBASS.

6. System architecture and configuration of CBASS

The CBASS software is run under Linux at the NSLS. Since

Python code is highly portable, it should be possible also to

run it under other operating systems. CBASS is set up as a

client/server system in which the GUI communicates with the

CBASS control server over TCP/IP sockets (Fig. 6). Multiple

clients can communicate with the server. For example, an

alternate client was created for NSLS beamline X25, where a

Java applet running on a Windows-based laptop runs as a

CBASS client to facilitate in-hutch goniometer control, while

the main CBASS GUI runs at the user end-station.

The CBASS server is a multi-threaded program with indi-

vidual threads responsible for processing commands from

clients, sending status information to clients, reading the status

of beamline motors that are under EPICS control and

listening for new client connections. One of the strengths of

CBASS is that it is a relatively small and readable program

consisting of roughly 6000 lines of Python code. The server

code is modular, with separate Python modules written for

diffractometer, detector, beamline, database and robot

control. This approach simplifies adapting CBASS to different

hardware since only small individual modules need to be

coded.

At the PXRR beamlines, lower level control is implemented

with servers. This was performed to isolate hardware differ-

ences within modules such as goniometer_lib and detec-

tor_lib, a strategy that helped us to negotiate gradual

upgrading of individual components as we moved away from

older hardware that occasionally required the use of outdated

operating systems on obsolete computers. By writing servers

with identical communication interfaces, we avoid having to

change the upper level code if we move or replace hardware.

We can mention a few details about organization. The

beamline motors and scalers are served through the EPICS

channel access server. Database access is accomplished by

Python’s interface to the PostgreSQL database server. We

control the sample-mounting robot by communicating with a

robot hardware server written at the Lawrence Berkeley

Laboratory (Snell et al., 2004). Beamline-specific routines,

such as those used for automatic beam-dump recovery and

beam alignments, are found in the cbass_macros.py file in

the CBASS configuration directory local to each beamline.

Beamline staff or even users, depending on file permissions,

can add or modify routines and load them into the running

system by typing ‘reload macros’ in the CBASS command line.

The program can be tailored to different configurations,

including use of the robot and project-tracking database,

through the editing of environment variables set in

cbass_env.txt in the CBASS configuration directory. Most

CBASS defaults can be set in the cbass.site file local to

each beamline. This command file sets common flags and

parameters, such as whether or not images should be binned

or counter intensities should be monitored during data

collection.

7. Summary

Only a few years ago, almost all protein crystallography

experiments performed at synchrotron beamlines involved a

user group coming to the beamline to mount manually and to

collect data on several crystals per day that were usually

associated with a single project. Higher beam intensities, as

well as advances in techniques related to expression, purifi-

cation, crystallization, and other beneficial fallout from the

Human Genome Project, have changed the way many beam-

lines are used. It is now not unusual for a high-brightness

beamline to collect data from dozens of crystals in a day that

belong to several different projects from multiple user groups.

Automation, such as robotic sample changers and project-

management databases, has been developed to cope with the

increase in crystals and intensity. The core of this efficiency is

good software. The PXRR CBASS and PXDB systems have

been developed to respond to these demands. We find that

their modularity, combined with the relative ease of use of the

Python programming language, has resulted in a robust and

easily extensible software package for our PX experimental

stations.

Financial support comes principally from the Offices of

Biological and Environmental Research and of Basic Energy

Sciences of the US Department of Energy, and from the

National Center for Research Resources of the National

Institutes of Health.

research papers

1346 Skinner et al. � Integrated software for synchrotron beamlines Acta Cryst. (2006). D62, 1340–1347

Figure 6
Architecture of CBASS.

References

Beazley, D. (1996). Proceedings of the Fourth USENIX Tcl/Tk
Workshop, pp. 129–139. Berkeley, CA, USA: USENIX.

Berman, H. M., Westbrook, J., Feng, A., Gilliland, G., Bhat, T. N.,
Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids
Res. 28, 235–242.

McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon,
A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K,
Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron
Rad. 9, 401–406.

Messerschmidt, A. & Pflugrath, J. W. (1987). J. Appl. Cryst. 20,
306–315.

Ravelli, R. B. G., Sweet, R. M., Skinner, J., Duisenberg, A. J. M. &
Kroon, J. (1997). J. Appl. Cryst. 30, 551–554.

Robinson, H. H., Soares, S., Becker, M., Sweet, R. & Héroux, A.
(2006). Acta Cryst. D62, 1336–1339.

Skinner, J. M., LaBarca, R. S. & Sweet, R. M. (1996). Nucl. Instrum.
Methods Phys. Res. A, 383, 627–630.

Skinner, J. M., Pflugrath, J. W. & Sweet, R. M. (1993). SHARE 80
Proceedings, p. 210.

Skinner, J. M. & Sweet, R. M. (1998). Acta Cryst. D54, 718–725.
Snell, G., Cork, C., Nordmeyer, R., Cornell, E., Meigs, G., Yegian, D.,

Jaklevic, J., Jin, J., Stevens, R. C. & Earnest, T. (2004). Structure, 12,
537–545.

Sweet, R. M., Skinner, J. M. & Cowan, M. (2001). Synchrotron Radiat.
News, 14, 5–11.

Tanabe, T., Ablett, J., Berman, L., Harder, D. A., Hulbert, S.,
Lehecka, M., Rakowsky, G., Skaritka, J., Deyhim, A., Johnson, E.,
Kulesza, J. & Waterman, D. (2006). Proceedings of the Ninth
International Conference on Synchrotron Radiation Instrumenta-
tion. In the press.

Ueno, G., Kanda, H., Kumasaka, T. & Yamamoto, M. (2005). J.
Synchrotron Rad. 12, 380–384.

research papers

Acta Cryst. (2006). D62, 1340–1347 Skinner et al. � Integrated software for synchrotron beamlines 1347

